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Summary

Omics technologies have transformed nephrology, providing deep insights into molecular mechanisms of kidney
disease and enabling more precise diagnostic tools, therapeutic strategies, and prognostic markers. Multi-omics
data integration, spanning bulk, single-cell, and spatial omics, offers a comprehensive view of kidney biology in
health and disease. In this review, we explore methods and challenges for integrating transcriptomic, epigenomic,
and spatial data. By combining omics layers, researchers can uncover novel molecular interactions and spatial tis-
sue organization, advancing our understanding of diseases like diabetic kidney disease and autosomal polycystic
kidney disease. This integrated approach is reshaping diagnostic and therapeutic strategies in nephrology and is
critical for optimizing insights available from spatial and multi-omics analysis.
Semin Nephrol 36:x-xx � 20xx Elsevier Inc. All rights reserved.
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INTRODUCTION
R
ecent advances in large-scale data generation and
computational analysis have significantly
impacted biomedical research and clinical medi-

cine. While fields like cancer research have led precision
medicine in these “big science” initiatives, other fields
have lagged behind. However, recent advances hold
exciting potential for nephrology to take the lead.1 In the
era of big data, the advent of high-throughput omics plat-
forms has markedly increased the volume of molecular
data, encompassing the genome, epigenome, transcrip-
tome, proteome, and metabolome, allowing a compre-
hensive understanding of human health and disease
development through multimodal representation.2

Adopting an integrative approach to analyze multiple
datasets is essential to address biological problems holis-
tically.

Multi-omics integrative analysis can be applied to dif-
ferent data resolutions for various downstream tasks. For
bulk omics, such integration typically aids in patient
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classification, disease subtyping, and the derivation of
biological insights.3 Single-cell data integration offers a
finer resolution, enabling the identification of cell subpo-
pulations, marker genes, and comparative analyses that
account for tissue heterogeneity.4 Furthermore, spatial
data integrates the spatial context on top of single-cell
(or spot-level) data, allowing the identification of spatial
functional domains, capturing cell−cell interplay, and
developing deeper insights into cellular and tissue con-
stitution.5 Accompanying such complex data, multi-
omics integration is fraught with challenges ranging
from data heterogeneity and dimensionality to interpret-
ability and validation.6 This review summarizes key
recent advancements in omics data integration applied in
nephrology while highlighting the major challenges, pos-
sible solutions, and future perspectives.
OVERVIEW OF MULTI-OMICS TECHNOLOGIES IN
NEPHROLOGY

Genomics, the study of an organism’s set of genes, has
been instrumental in identifying genetic variants linked
to kidney diseases through techniques like whole
genome sequencing (WGS) and genome-wide associa-
tion studies (GWAS). The WGS method identifies DNA
variations beyond the exons, particularly in introns and
noncoding regions, which can cause genetic disorders.
These variations are missed by whole exome sequencing,
which examines exons. Additionally, WGS detects com-
plex trait variants, such as copy number variants and
those in genes located within intronic and other noncod-
ing areas of the genome. The readers interested in more
details are referred to the reviews of Zoccali et al. and
Devarajan et al.7,8 GWAS identifies single nucleotide
polymorphisms among participants and is used to exam-
ine the DNA of large groups of individuals in order to
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detect genetic variations linked to specific diseases.
GWAS uncovered specific genetic variants linked to
chronic kidney disease (CKD), such as those in the
shroom family member 3 (SHROOM3) gene, which have
been shown to contribute to kidney fibrosis.9,10 A study
by Li et al. combined GWAS with epigenomic and tran-
scriptomic resources and identified 41 genome-wide sig-
nificant loci related to estimated glomerular filtration
rate in individuals of African ancestry and those with
ancestry in the Americas. This approach not only
revealed two novel loci but also highlighted potential
effector genes and key regulatory elements involved in
renal function and disease, emphasizing the value of
diverse, omics data for advancing understanding and
improving clinical outcomes in CKD.11 A limitation of
GWAS is that single nucleotide polymorphisms may not
directly explain changes in gene expression.

High-throughput gene expression measurements,
including RNA sequencing (RNA-seq) and single-cell
transcriptomics, have revolutionized nephrology by pro-
viding unprecedented insights into renal cell types and
gene expression patterns. Kidney biopsy samples, funda-
mental to nephrology research, are a rich data source for
deciphering disease etiologies and can now be used to
reveal potential mechanisms with multi-omics data.
These samples can be analyzed through bulk RNA-seq
at various levels, including compartment specific and
nephron segment specific, or via single-cell RNA-seq
(scRNA-seq) to produce detailed transcriptomic profiles
(reviewed in detail by Hill et al.12). RNA-seq has deep-
ened our understanding of kidney fibrosis,13 identifying
key cell populations such as myofibroblasts, which origi-
nate from pericytes and fibroblasts, contributing to extra-
cellular matrix deposition in CKD. Moreover, scRNA-
seq has further clarified distinct fibroblast subtypes and
injury-associated proximal tubule cells, underscoring
their critical roles in fibrosis progression and revealing
new therapeutic targets such as targeting profibrotic sig-
naling pathways and ferroptosis.14 Additionally, single-
cell transcriptomics has greatly expanded our knowledge
of kidney cellular diversity, including the discovery of
unique podocyte subpopulations in focal segmental glo-
merulosclerosis, which enhances our understanding of
disease mechanisms and supports personalized treatment
approaches.15 A limitation of RNA-seq data is in RNA
levels not always correlating with protein abundance.

Beyond transcriptomics, epigenetics and proteomics
data can also enrich our comprehension of kidney biol-
ogy. Epigenomics, which is the study of heritable
changes in gene expression that do not involve altera-
tions to the underlying DNA sequence, advanced our
understanding of epigenetic modifications roles in kid-
ney development, function, and disease. For example,
increased DNA methylation in the Wnt/beta-catenin
pathway was linked to age-related kidney dysfunction,
and DNA methyltransferase 1-mediated methylation was
critical for nephron progenitor maturation, preventing
developmental defects by silencing transposable ele-
ments in the kidney.16 Another study examined cytosine
methylation and open chromatin states in kidney samples
from 399 individuals, including both CKD patients and
controls, and discovered that significant methylation
changes associated with kidney disease were influenced
by genetic variants linked to the condition. Additionally,
the study identified regions with both methylation and
chromatin alterations that affected gene expression,
especially in metabolism-related genes. Methylation risk
scores were found to enhance disease classification and
prediction, indicating a potential causal relationship
between epigenetic changes and kidney disease, suggest-
ing new possibilities for risk stratification.17

Moreover, the use of advanced mass spectrometry
techniques, often coupled with liquid chromatography,
has allowed for a detailed analysis of the kidney prote-
ome, leading to the identification of disease-specific pro-
teins such as the M-type phospholipase A2 receptor in
membranous nephropathy, which has profoundly influ-
enced diagnostic and therapeutic approaches in kidney
disease.18

Metabolomics, unlike the other omics mentioned ear-
lier, uses mass spectrometry combined with liquid chro-
matography to profile metabolites. A key distinction is
that metabolites reflect the functional output of enzy-
matic pathways, indicating which pathways are active or
suppressed under specific conditions compared to control
conditions. This technique has uncovered the significant
role of gut-derived compounds like indoxyl sulfate and
p-cresol sulfate in the progression of CKD, thereby pro-
viding crucial insights into the metabolic disturbances
associated with renal dysfunction.19 Another urine
metabolomics study revealed 13 metabolites correlating
with mitochondrial metabolism in diabetic kidney dis-
ease (DKD), with further studies assessing their roles in
predicting future kidney function decline and under-
standing kidney disease progression.20,21 Also, acute kid-
ney injury (AKI) metabolomics has revealed that
niacinamide, a precursor in the salvage pathway of nico-
tinamide adenine dinucleotide (an essential cofactor for
energy metabolism and cellular health), plays a signifi-
cant role in protecting kidney function.22

While these methods have advanced our knowl-
edge, they also have limitations, such as lack of sin-
gle-cell resolution or spatial information. To address
these challenges, advancements like spatial omics
combining histologic imaging with spatial profiling
and single-cell genomics can reveal the intricate tis-
sue microenvironments and their functions.23,24 For
instance, a recent study by Sharma et al.24 has identi-
fied endogenous adenine as a novel biomarker for
unraveling the biological mechanisms behind DKD
progression, using a combination of urine metabolo-
mics, single-cell transcriptomics, and spatial
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metabolomics. Additionally, machine learning can
analyze high-dimensional pathology data from digital
biopsy images to reveal significant patterns.25

Beyond individual omics, multi-omics studies are cru-
cial for identifying biomarkers and understanding dis-
ease mechanisms in nephrology. As discussed in Eddy et
al.,26 the study of kidney diseases presents a unique
opportunity to leverage multi-omics data integration, as
the necessary biosamples (i.e., kidney biopsies), which
are valuable resources for generating genetic, transcrip-
tomic, proteomic, and metabolomic data, are often col-
lected in clinical practice. While single-cell and spatial
omics have advanced tissue analysis, they often capture
only a single layer of complexity. Integrative multi-
omics, which combines various data types, offers a more
comprehensive view to enhance our understanding of
diseases like DKD and AKI. This integration allows for
the identification of noninvasive surrogate markers that
reflect cellular processes occurring in the kidney, offer-
ing a less invasive method to monitor disease progres-
sion and treatment response.
CHALLENGES FOR MULTI-OMICS DATA
INTEGRATION

Integrating multi-omics datasets poses significant chal-
lenges due to their complexity and the inherent variabil-
ity in biological data (Fig. 1). In the following sections
we provide an overview of these challenges.
Missing Data

Missing data are a common issue in omics studies,
whether resulting from technical failures such as poor
tissue quality, insufficient sample volume, or measure-
ment system limitations or other factors such as budget
restrictions or subject dropout. Missing values in large-
scale ‘omics data can significantly hinder downstream
Figure 1.Multi-omics data integration in nephrology research.
analyses,27 making the handling of missing data a regu-
lar challenge in multi-omics integration and analysis.
The variability in the set of observations with missing
data and the proportion of missingness across different
omics datasets add to this complexity. Readers are
referred to more details in the review of Flores et al.28
Data Availability

In the context of nephrology research, a significant chal-
lenge is the scarcity of large, diverse datasets, especially
in medical imaging-based deep learning.1, 29 Moreover,
both the initial and continuous model training depend on
ongoing data supplementation, validation, and improve-
ment. Therefore, global, secure, and real-time updated
resources for the research and clinical communities help
improve the availability of larger datasets, which facili-
tates the development of highly parameterized models,
thus offering significant transformative potential. Initia-
tives like the Kidney Precision Medicine Project,30-32

Nephrotic Syndrome Study Network,33 Transformative
Research in Diabetic Nephropathy,34 and Cure Glomeru-
lonephropathy35 aim to achieve comprehensive charac-
terization of kidney biopsies across various kidney
disease subtypes.
High Dimensionality and Data Heterogeneity

Omics datasets are typically high in dimensionality, with
thousands of variables (such as gene expression levels)
but relatively few samples. This “curse of dimensional-
ity” can result in overfitting, where models excel on
training data but fail on new, unseen data. Different
omics layers (e.g., genomics, transcriptomics, proteo-
mics) present data in various formats and scales. Gene
expression datasets may have tens of thousands of fea-
tures, while metabolomics datasets might contain only a
few hundred. This heterogeneity further complicates
data integration and analysis.

In nephrology, the presence of comorbidities often
makes patient cohorts highly heterogeneous, complicat-
ing analysis. Therefore, data standardization and harmo-
nization, along with the ability to integrate multimodal
datasets, are critical.36 Identifying biomarkers for kidney
disease involves analyzing subtle patterns across differ-
ent omics layers, which is complicated by the high
dimensionality and variability of the data. Effectively
reducing dimensionality and selecting the most influen-
tial features are essential for improving model perfor-
mance and ensuring robust results.
COMPUTATIONAL METHODS FOR DATA
INTEGRATION

Addressing the challenges associated with integrative
multi-omics analyses requires a combination of careful
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data handling, advanced statistical methods, and
thoughtful integration strategies to derive meaningful
insights from multi-omics data. We outline the types of
integration strategies structurally and algorithmically, as
well as their application in recent nephrology research to
advance clinical insights and potential therapeutic inter-
ventions.
Overview of Integration Strategies

From a structural point of view, most integration tasks
for multi-omics measurements can be classified into
three categories.37 Horizontal integration combines data
from different samples within the same modality, such
as integrating gene expression data from various cohorts
for a meta-analysis to increase the statistical power. The
major challenge for this type of integration is proper nor-
malization and batch correction.38 Vertical integration
uses common samples or cells as the anchor to integrate
simultaneous profiling of multiple modalities. For exam-
ple, it can integrate simultaneous profiling of scRNA-
seq, which measures gene expression, and single-cell
assay for transposase-accessible chromatin with
sequencing (scATAC-seq), which assesses chromatin
accessibility, using the 10x Genomics Multiome plat-
form. Given the mixed embedding space of multimodal
features, preserving biological interpretability is chal-
lenging in this type of integration. Diagonal integration
in multi-omics refers to organizing multiple omics data-
sets into a block-diagonal matrix, where each omics
dataset occupies a separate block along the diagonal,
allowing for independent but aligned analysis of each
omics layer within a unified framework. This diagonal
approach presents the greatest challenge, as shared cells
or omics features to serve as anchor points for integra-
tion are lacking. This approach typically depends on
identifying strong correlations among low-dimensional
manifolds across different data modalities.39 From an
algorithmic perspective, integration techniques are tradi-
tionally classified into three major levels: early, middle,
and late integration, also referred to as concatenation-
based, transformation-based, and model-based appro-
aches, respectively.40 Furthermore, Picard et al.
expanded on this framework by introducing additional
categories, specifically early, intermediate, mixed, late,
and hierarchical integration.2 We illustrate these techni-
ques in Figure 2.

Early integration directly concatenates multiple omics
modalities, enabling simultaneous analysis while pre-
serving interactions across different layers.41 However,
this method is challenged by the inherent heterogeneity
of input data, which can vary in distribution, noise levels,
and missingness, potentially leading to biased results.
Moreover, the high dimensionality relative to the sample
size increases the risk of overfitting. Mixed integration
addresses some of these challenges by first extracting
latent representations from each high-dimensional omics
layer, before combining them for downstream
analysis.2,42 This approach reduces dimensionality and
noise. However, since each omics layer is transformed
independently, there is a risk of losing valuable inter-
play and correlations between modalities. Intermedi-
ate integration differs from mixed integration in that
it does not require prior concatenation or independent
transformation of datasets.2 Instead, it seeks to iden-
tify a common latent space that all omics data share,
such as through nonnegative matrix factorization
(NMF).43 This approach assumes that multi-omics
data converge in a shared latent representation,
thereby considering interactions and correlations.
However, it often relies on unsupervised methods,
which makes it difficult to incorporate prior biologi-
cal knowledge into the analysis.

Late integration is a straightforward approach involv-
ing the combination of outputs from individual analyses
of each omics layer. For example, Chen et al.44 used late
integration to combine data from various sources, includ-
ing epigenome-wide DNA methylation from blood cells,
genetic variants, circulating proteins, and microRNAs
(miRNAs). They identified specific DNA sites (CpG
loci) associated with kidney failure risk in individuals
with type 1 diabetes and DKD. By analyzing these sites
along plasma proteins and miRNAs, they performed
mediation analyses to determine how proteins and miR-
NAs affect the link between DNA methylation and kid-
ney failure risk. While simple, late integration is limited
by its inability to capture shared knowledge across omics
layers, thereby undermining the holistic nature of multi-
omics analysis.2

Hierarchical integration adopts a sequential process
that incorporates prior biological knowledge, such as
pathway and regulatory relationships among omics
layers.45 Although this method can be highly specific
and informative for certain types of data, it often requires
extensive external biological knowledge, making it less
robust and versatile in handling diverse data types.
Methods like Mergeomics46 exemplify hierarchical inte-
gration. Mergeomics leverages multiple biological data-
bases, including over 25 different pathways and network
databases, to identify regulatory pathways using prior
biological knowledge. In a study on cisplatin-induced
AKI by Deng et al.,47 Mergeomics employed marker set
enrichment analysis and weighted key driver analysis to
integrate multi-omics data and pinpoint key molecular
targets. This approach identified tumor-associated cal-
cium signal transducer 2 (Tacstd2) as a key driver in the
ferroptosis network associated with cisplatin-induced
AKI. Functional analyses, including gene ontology and
Kyoto encyclopedia of genes and genomes (KEGG),
along with network visualization using Cytoscape,



Figure 2.Overview of integration techniques in multi-omics data analysis.
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provided further insights into Tacstd2’s role and its inter-
actions with other genes.
Description of Data Integration Methods

Herein, we organized the state-of-the-art data integration
methods that can be applied to bulk, single-cell, and
spatial data, which have been developed to address the
aforementioned challenges (Tables 1-3).
Integration Methods for Bulk Omics Data

Bulk omics integration methods are developed to address
problems, mainly focusing on disease subtyping,



Table 1. Integration Methods for Bulk Omics Data

Method Field of Application Algorithm Sample Requirement Supported Input Data Reference

BCC Subtyping Bayesian consensus
clustering

Paired Omics data , 98

iClusterPlus Subtyping, Biomarker Gaussian latent vari-
able model

Paired CNV, Omics data 57

intNMF Subtyping Non-negative matrix
factorization

Paired CNV, Omics data 56

JIVE Subtyping, Insights Joint and individual
variation

Partially paired Omics data 58

mixOmics Subtyping, Biomarker Canonical correlation,
Partial least squares

Paired Omics data 60

MOFA Subtyping, Biomarker Factor analysis Partially paired Mutation, Omics data,
Drug Response

51

NEMO Subtyping Similarity Partially paired Omics data 54

PSDF Subtyping Bayesian Paired Omics data 50

SNF Subtyping Similarity network
fusion

Paired Omics data, Discrete
data

53
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survival prediction of subtypes, biomarker discovery,
and biological insights using large-scale datasets such as
gene expression, DNA methylation, CNVs, and muta-
tions.48 Bulk omics inputs are usually composed of
matrices with rows representing features (gene, CpG,
protein, drug response, etc.) and columns representing
bulk tissue samples or patients. Huang et al. classified
joint analysis of bulk multi-omics data into various cate-
gories, including Bayesian, network-based, matrix fac-
torization−based, and multi-step correlation−based
methods, involving mix and intermediate integration
approaches as mentioned above.49

Bayesian methods such as Bayesian consensus clus-
tering (BCC)98 and patient-specific data fusion (PSDF)50

use the Dirichlet process foundation for clustering and
feature selection. MOFA uses a probabilistic Bayesian
model supporting a combination of different noise mod-
els.51 For instance, Clos-Garcia et al. found distinct gut
microbiome and blood metabolome signatures in indi-
viduals with type 1 diabetes and progressive kidney dis-
ease, stratified by albuminuria levels, by integrating
Table 2. Integration Methods for Single-Cell Omics Data

Method Field of Application Algorithm Sample
Require

Cobolt Joint latent Hierarchical generative
model

Paired

GLUE Joint latent Graph-linked unified
embedding

Unpaire

Signac Joint latent Reciprocal LSI
projection

Paired

UnionCom Joint latent Manifold alignment Unpaire
MOFA+ Joint latent Stochastic variational

inference
Paired

MultiVI Joint latent Deep generative model Paired
LIGER Joint latent Matrix factorization Unpaire
Seurat Joint latent Weighted nearest

neighbor
Unpaire
multi-omics data using methods like shotgun sequenc-
ing, metabolomics profiling, and the MOFA tool for
multi-omics analysis.52

Network-based methods such as Similarity Network
Fusion (SNF)53 and Neighborhood-based multi-omics
clustering (NEMO)54 handle data heterogeneity by con-
structing and fusing omic-specific similarity matrices,
enabling robust subgroup identification across samples.

For example, gene expression and DNA methylation
data were integrated using SNF in a study55 to classify
kidney renal clear cell carcinoma (KIRC) into three
stages. By combining these data types, a fused network
was created, which improved cancer stage prediction
compared to using either data type alone. The fused
network’s structure captured patient relationships more
effectively, allowing for more accurate classification.
This approach demonstrated the power of multi-omics
data integration for better disease diagnosis and classifi-
cation of KIRC.

Matrix factorization-based methods such as Integra-
tive NMF (intNMF),56 iCluster+,57 and JIVE 58 project
ment
Supported Input Data Reference

scRNA-seq, scATAC-seq 68

d scRNA-seq, scATAC-seq, scmC-seq 75

scRNA-seq, scATAC-seq 69

d scRNA-seq, scATAC-seq, scDNAm 99

scRNA-seq, scATAC-seq, Methyl 66

scRNA-seq, scATAC-seq, Protein 67

d scRNA-seq, scATAC-seq, snDNAm 74

d scRNA-seq, scATAC-seq, Protein 76



Table 3. Integration Methods for Spatial Omics Data

Method Field of Application Algorithm Sample Requirement Supported Input Data Reference

LIGER Joint latent Matrix factorization Unpaired Single-cell data, Spatial
data

74

Seurat Joint latent Weighted nearest
neighbor

Unpaired Single-cell data, Spatial
data

76

ENVI Mapping Variational inference Unpaired scRNA-seq, Spatial
transcriptomics

82

Tangram Mapping Nonconvex
optimization

Paired scRNA-seq, Spatial
transcriptomics

83

stPlus Mapping Autoencoder, Weighted
k-NN

Unpaired scRNA-seq, Spatial
transcriptomics

84

CellTrek Mapping Random forest, Mutual
nearest neighbors

Unpaired scRNA-seq, Spatial
transcriptomics

85

SpaGCN Joint latent, Spatial
domain

Graph convolutional
network

Paired Spatial transcriptomics
with histology

88

GraphST Alignment, Spatial
domain

Graph self-supervised
contrastive learning

Paired Spatial transcriptomics
with histology

89

SpatialGlue Joint latent, Spatial
domain

Graph neural network
with dual attention

Partially paired Spatial epigenome,
transcriptome,
proteome

90
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the data into lower-rank matrices including metagenes
(combination of original genes) and loadings (coefficient
matrix), facilitating the identification of shared biologi-
cal patterns while reducing noise. A recent study59 inte-
grated data on aneuploidy, DNA hypermethylation,
mRNA, and miRNA expression, identifying 28 distinct
molecular subtypes, with clustering patterns reflecting
histology and tissue type. Using the iCluster algorithm,
three kidney cancer subtypes were identified: a pan-kid-
ney cluster, an epithelial-mesenchymal transition cluster,
and a heterogeneous group consisting of clear cell, papil-
lary, and chromophobe renal cell carcinomas (RCC).
The pan-kidney cluster showed high hypoxia signaling
and active immune-related pathways, while chromo-
phobe RCC co-clustered with adrenal cortical carci-
noma, lacking hypoxic and immune signals. This
analysis enhances the understanding of kidney cancer’s
molecular landscape.

On the other hand, correlation-based methods such as
mixOmics60 implement both canonical correlation analy-
sis and partial least squares to maximize the covariance
between different data modalities and mitigate sensitiv-
ity to outliers. This analysis is exemplified in a study on
kidney transplant rejection61 applying various techni-
ques, including principal component analysis (PCA),
integrative PCA, sparse partial least squares discriminant
analysis, and sparse generalized canonical correlation
analysis (currently accessible in mixOmics). The study
integrated genomics and proteomics data from patients
with acute rejection and nonrejecting controls, identify-
ing key gene and protein signatures associated with
immune responses. Although most integration methods
require paired samples across multiple modalities to pro-
ceed, methods like JIVE,58 multi-omics factor analysis
(MOFA),51 and NEMO54 can be applied to partially
paired samples to solve the missing data dilemma
described earlier.

Last but not least, the multistep integration combines
data from various omics layers to extract meaningful
insights in a structured manner and then integrates them
to capture shared patterns and interactions, focusing on
the consensus and association between omics.40 Haug et
al.62 used the multistep approach to explore the renal
medulla, creating a detailed genomic reference for adult
kidneys. By integrating individual results from bulk
RNA-seq, ATAC-seq, and chromatin conformation with
spatial transcriptomics and immunohistochemistry, they
identified 31 high-confidence marker genes and provided
clear distinctions between medullary and cortical tissues.
Additionally, the study reclassified genotype-tissue
expression project (GTEx) kidney samples into medul-
lary or cortical categories using PCA. This combined
GTEx data with the study’s RNA-seq data, allowing for
differential analysis across a broader dataset. It also
highlighted medullary-specific enhancer regions and
potential regulatory roles of genes like claudin 14
(CLDN14) and Wnt family member 7B (WNT7B).
Integration Methods for Single-Cell Omics Data

Unlike bulk omics data, single-cell omics datasets pro-
vide information at a single-cell resolution, enabling
more precise understanding of various aspects, including
cell type classification, detailed modeling of gene regula-
tory networks, and the biological process under study.63

In single-cell multi-omics analysis, the objective is to
integrate diverse modalities into a shared latent space
where the data can be jointly analyzed to foster down-
stream analyses (cell lineage tracing, tissue atlas, assess-
ing microenvironment, etc.).64 These integration
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methods can be broadly categorized into paired and
unpaired strategies, the latter of which, unpaired meth-
ods, is also called alignment.65

In the case of paired data where multiple omics layers
are collected simultaneously from the same cell, Stano-
jevic et al. summarized the common integration method
as matrix factorization−based, neural network−based,
and network-based approaches.65 Matrix factorization
−based methods like MOFA+66 employ hierarchical
generative modeling and variational inference to produce
unified latent representations. Deep learning−based
methods like MultiVI67 and Cobolt68 similarly use varia-
tional autoencoders that model each omic layer with its
own distinct distribution. Network-based methods like
Signac69 focus specifically on two omics, such as
scRNA-seq and scATAC-seq, leveraging latent semantic
indexing (LSI) to treat chromatin accessibility data in a
way analogous to natural language processing.70

In a study of DKD,71 researchers used Signac to ana-
lyze single-nucleus RNA-seq (snRNA-seq) and single-
nucleus ATAC-seq (snATAC-seq) data from kidney cor-
tex samples from patients with and without type 2 diabe-
tes, to integrate chromatin accessibility with gene
expression profiles. They identified accessible chromatin
regions across various cells, with a focus on proximal
convoluted tubules cells. Signac enabled batch effect
correction and doublet removal, facilitating the identifi-
cation of chromatin accessibility linked to cell type−spe-
cific markers. This approach uncovered differential
chromatin features and transcription factor binding sites
associated with glucose metabolism and glucocorticoid
signaling.

A study investigating the role of mineralocorticoid
excess in hypertension and kidney disease72 employed
Signac for scATAC-seq analysis identifying chromatin
accessibility changes in principal and connecting tubule
cells and highlighting the protective effects of antihyper-
tensive therapies in a rat model. Signac was also used to
explore how a Wilms tumor−associated mutation in the
histone acetylation reader eleven-nineteen-leukemia
(ENL) disrupts kidney differentiation in mice,73 reveal-
ing alterations in the gene regulatory landscape that pro-
mote nephron progenitor commitment while hindering
their maturation, ultimately leading to severe develop-
mental defects, which could be reversed by a small mole-
cule inhibitor targeting mutant ENL.

In contrast, unpaired methods are designed to inte-
grate omics data obtained from different experiments
and cell types without requiring direct correspondence
between datasets. A common approach in these methods
is to map the data into a shared co-embedded space or a
nonlinear manifold to identify common patterns.65

LIGER74 uses iNMF to align and analyze heterogeneous
datasets. GLUE75 applies graph-linked variational
autoencoders and adversarial alignment to learn uni-
fied feature representations while simultaneously
reconstructing omics layers from unaligned datasets.
Seurat76 integrates data using CCA combined with
mutual nearest neighbor identification to anchor features.
One study on autosomal dominant polycystic kidney dis-
ease (ADPKD)77 analyzed single-nucleus multi-omics
data from a mouse model, integrating transcriptomic and
epigenetic datasets while using Harmony for batch effect
correction. Uniform manifold approximation and projec-
tion (UMAP) and a weighted nearest neighbor graph
were employed for dimensional reduction and integra-
tion of snRNA-seq and snATAC-seq data. Seurat’s Find-
Markers function identified differentially expressed
genes and accessible chromatin regions, revealing cell
type−specific responses to polycystic kidney disease
(Pkd1) deletion. In another related study,78 snRNA-seq
data from ADPKD and healthy human kidney samples
were analyzed. Harmony was again used for batch effect
correction, with UMAP for dimensionality reduction and
the Louvain algorithm for clustering. This study identi-
fied key signaling pathways, particularly in proximal
tubular cells, and highlighted G protein−coupled recep-
tor class C group 5 member A (GPRC5A) as a marker
for cyst-lining collecting duct cells. Both studies by
Humphreys et al.77,78 utilized Seurat for single-cell-level
integration and analysis, providing insight into the early
molecular deregulation in a mouse model of PKD and
human ADPKD kidney pathology.
Spatial Omics Integration Methods

Spatial omics integration is crucial for capturing tissue
architecture and deciphering intricate cell−cell interac-
tions with spatial and temporal precision. However, spa-
tial assays often face inherent trade-offs between
resolution and the breadth of molecular features they can
access. For instance, platforms like 10x Genomics’ Vis-
ium offer spot-level resolution, typically capturing
around 10 cells per spot while offering comprehensive
transcriptomic profiling. On the other hand, matrix-
assisted laser desorption/ionization mass spectrometry
imaging (MALDI-MSI) provides high spatial resolution,
enabling visualization of spatial metabolites within tis-
sues.

This integration of datasets is further enhanced when
combining transcriptomic, chromatin accessibility, and
metabolic features that overlap with single-cell data.
Computational tools like LIGER and Seurat can leverage
these shared features for robust alignment and joint anal-
ysis. For example, in a recent study, Humphreys and col-
leagues used the 10X Visium platform to spatially map
transcriptomic data in human kidney tissue. They inte-
grated these data with histopathological analysis by per-
forming morphology-based clustering. Seurat was then
used to normalize the transcriptomic data, perform clus-
tering, and reduce dimensionality, allowing morphol-
ogy-based clusters integration with gene expression
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profiles. This integration helped align molecular signa-
tures with specific tissue morphologies, enhancing the
interpretation of kidney lesions associated with CKD.79

Rabelink and colleagues employed MALDI-MSI to
map lipidome and metabolome across renal structures in
the developing human fetal kidney. They performed
post-MALDI immunofluorescence staining for coregis-
tration with the MALDI-MSI data, which enhanced the
identification of distinct renal cell types. Using Seurat,
they integrated scRNA-seq data with spatial metabolo-
mics and isotopic tracing. This multi-omics approach
linked specific metabolic signatures to distinct renal cell
types, revealing a shift in substrate utilization from gly-
colysis to fatty acid oxidation during proximal tubules
differentiation.80 Similarly, in a related study investigat-
ing metabolic changes in kidney tissue after ischemia-
reperfusion injury in mice, the team also integrated
MALDI-MSI with immunofluorescence data. They con-
ducted MSI measurements on kidney tissue sections at
various time points and with different isotope-enriched
nutrients. To capture dynamic metabolic changes at pixel
level while minimizing batch effects, they employed a
two-step process from the Seurat package. First, anchors
were identified between datasets using single-pixel lipid
profiles; then, they transferred the abundance of isotope-
enriched metabolites into the control dataset via k-near-
est neighbors (k-NN) analysis. This process established
comprehensive isotope-labeling information, enabling
calculation of dynamic metabolic changes and the gener-
ation of pseudoimages that visualized the in situ hetero-
geneity of metabolic dynamics in ischemic injury.81

Despite the advantages of spatial assays, challenges
remain in balancing resolution with the breadth of omics
features. Technologies such as 10x Xenium, NanoString,
CosMx, and MERFISH offer single-cell resolution but
are limited in transcriptomic coverage, typically measur-
ing a few hundred to a few thousand genes. This reduced
depth presents challenges for detailed biological analy-
sis. To address this, methods like ENVI,82 Tangram,83

stPlus,84 and CellTrek85 have been developed to impute
missing gene expression in spatial data by leveraging
scRNA-seq information. These tools integrate recon-
structed expression data with spatial datasets, facilitating
the alignment and joint analysis of single-cell and spatial
omics data. Instead of imputing gene expression, meth-
ods like CellTrek use a spatial mapping algorithm to
project cells onto spatial transcriptomic coordinates and
employ random forest and mutual nearest neighbor to
impute the spatial coordinates of single-cell data. For
example, in a recent study addressing the kidney’s com-
plex three-dimensional cellular structure, Susztak et al.86

generated high-quality datasets from numerous samples
of healthy, diabetic, and hypertensive kidney tissues.
They utilized single-cell, single-nucleus, and spatial
transcriptomics data. Using Signac, they analyzed
snRNA-seq and snATAC-seq data to identify cell types
and chromatin accessibility. These cell types were
mapped to spatial transcriptomic data using Cell2loca-
tion, a Bayesian model that enables the integration of
single-cell and spatial transcriptomics with higher sensi-
tivity and resolution.87 CellTrek was employed to impute
precise cell locations at near single-cell resolution. This
integration revealed distinct kidney microenvironments,
such as glomerular, immune, tubular, and fibrotic
regions, providing new insights into the spatial organiza-
tion of healthy and diseased kidney tissues.

Other spatial omics tools, including SpaGCN88 and
GraphST,89 integrate spatial information and single-
omics modalities by applying graph neural networks
(GNNs) to capture spatial domains, enhancing the inter-
pretation of tissue architecture. They can identify spatial
domains that preserve temporal and functional informa-
tion. However, these methods only support unimodal
input, and feature concatenation is needed if applied on
the multimodality scale assuming the same weight.

Unlike the previously mentioned methods, which
focus primarily on aligning spatial transcriptomics with
single-omics or single-modality data, SpatialGlue90 is
currently the only method designed for spatial multi-
omics data integration using a GNN framework with the
dual-attention mechanism. SpatialGlue first uses k-NN
to construct a spatial neighborhood graph and then
applies a GNN with an attention mechanism to learn
modality-specific representations. This allows for the
detailed analysis of complex tissue structures and cell
interactions across different molecular modalities.
FUTURE PERSPECTIVE AND PREDICTIONS IN THE
FIELD

The field of nephrology stands on the cusp of a transfor-
mative era driven by the integration of high-dimensional
omics data across different measurement scales. The
advancements in multi-omics technologies, as discussed
in this review, have already begun to unravel the com-
plex molecular underpinnings of kidney diseases. We
are optimistic that the future holds even greater promise
as these technologies continue to evolve and become
more sophisticated. These developments will be impor-
tant to pursue to implement precision nephrology.
Enhanced Data Integration and Interpretation

Future efforts in nephrology will likely focus on enhanc-
ing the integration of multi-omics data across different
resolutions and modalities. The development of more
advanced computational algorithms that can handle the
increasing complexity and heterogeneity of these data-
sets will be crucial for this task. These algorithms will
need to seamlessly integrate genomics, transcriptomics,
proteomics, metabolomics, and spatial data to provide a
holistic understanding of kidney disease mechanisms.
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Integration With Artificial Intelligence and Machine
Learning

The future of multi-omics integration can be closely tied
to and benefit from the most recent advancements in AI
and ML. These technologies will play a pivotal role in
identifying patterns and correlations within complex
omics datasets that may not be apparent through tradi-
tional analysis methods. AI-driven models could predict
disease progression, identify novel therapeutic targets,
and even suggest personalized treatment plans based on
a patient’s unique omics profile. Importantly, some AI
and ML models can be adapted to increasingly accessi-
ble large language models91 and foundation models,92

making model retraining more efficient.
Broader Data Accessibility and Global
Collaboration

The accuracy of the multi-omics integration and AI mod-
els in nephrology will undoubtedly depend on broader
accessibility to these technologies and global collabora-
tion. Developing open-access data repositories and open-
source code/packages will ensure that researchers and
clinicians worldwide have the necessary tools and data-
sets to advance the field. International consortiums and
cross-disciplinary collaborations will foster the sharing
of knowledge and resources, accelerating the pace of dis-
covery and translating research findings into clinical
practice more rapidly.
Real-Time Personalized Medicine

The ultimate goal of multi-omics integration in nephrol-
ogy is the realization of real-time, personalized medi-
cine. As these technologies mature, we anticipate the
emergence of clinical tools that can integrate patient-spe-
cific omics data in real time, enabling personalized treat-
ment strategies. This will be particularly transformative
for diseases like CKD and AKI, where early detection
and individualized treatment can significantly improve
outcomes.
Crosstalk Between Nephrology and Other Diseases

The kidneys play a critical role in maintaining overall
health by filtering waste, balancing fluids, and regulating
blood pressure, among other functions. Disruptions in
kidney function can have widespread effects on other
systems, and vice versa. There have been known connec-
tions between kidney diseases and other diseases includ-
ing cardiovascular diseases, lung diseases, cancers, and
neurodegenerative diseases.93−96,100 Kidney diseases
could also be complications of other diseases, such as
preeclampsia during pregnancy.97 It is expected that
multi-organ or system-level research using tools such as
multi-omics will reveal new holistic insights for the
long-term management of patients to improve their life
span and quality of life.
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